organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,6,7,9,10,12,13,15-Octahydro-2*H*-1,3dithiolo[4,5-*i*][1,4,7,12]dioxadithiacyclotetradecine-2-thione

Rui-Bin Hou,^a Bao Li,^b Tie Chen,^a Bing-Zhu Yin^a* and Li-Xin Wu^b

^aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and ^bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: zqcong@ybu.edu.cn

```
Received 21 July 2009; accepted 24 July 2009
```

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.088; data-to-parameter ratio = 19.6.

In the title molecule, $C_{11}H_{16}O_2S_5$, the two S atoms from the macrocycle are situated on opposite sides of the mean plane of the five-membered ring, deviating from it by 1.288 (3) and 1.728 (3) Å. In the crystal, weak intermolecular $C-H\cdots S$ and $C-H\cdots O$ hydrogen bonds link the molecules into layers parallel to (100). The crystal studied was a racemic twin.

Related literature

For crown ether annulated 1,3-dithiol-2-thiones, see: Hansen *et al.* (1992); Trippé *et al.* (2002). For details of the synthesis, see: Chen *et al.* (2005). For a related structure, see: Hou *et al.* (2009)

Experimental

Crystal data

 $C_{11}H_{16}O_2S_5$ $M_r = 340.54$ Monoclinic, $P2_1$ a = 8.9201 (18) Å b = 8.5317 (17) Å c = 10.128 (2) Å $\beta = 97.00 (3)^{\circ}$ $V = 765.0 (3) \text{ Å}^{3}$ Z = 2Mo $K\alpha$ radiation $\mu = 0.75 \text{ mm}^{-1}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.909, \ T_{\max} = 0.922$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.088$ S = 1.06 3221 reflections 164 parameters1 restraint $\begin{array}{l} T=291 \ \mathrm{K} \\ 0.13 \ \times \ 0.12 \ \times \ 0.11 \ \mathrm{mm} \end{array}$

7527 measured reflections 3221 independent reflections 3100 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$

> H-atom parameters constrained $\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983); 1359 Friedel pairs Flack parameter: 0.42 (9)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7A\cdots S1^{i}$	0.97	2.86	3.695 (3)	145
$C10-H10A\cdots O2^{ii}$	0.97	2.51	3.317 (3)	140
C	1 1. (1)		1.1	

Symmetry codes: (i) x - 1, y, z - 1; (ii) -x + 1, $y + \frac{1}{2}$, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2592).

References

- Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570–575.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hansen, T. K., Jφrgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403–6409.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461–2464.

supplementary materials

Acta Cryst. (2009). E65, o2042 [doi:10.1107/S1600536809029468]

4,6,7,9,10,12,13,15-Octahydro-2H-1,3-dithiolo[4,5-i][1,4,7,12]dioxadithiacyclotetradecine-2-thione

R.-B. Hou, B. Li, T. Chen, B.-Z. Yin and L.-X. Wu

Comment

In the context of redox-responsive ligands, TTF is an ideal redox-active unit in view of its unique π -electron donating properties. Attachment of ligands such as crown ethers to TTF in many cases results in the electrochemical tunable ligands (Trippé *et al.*, 2002). Crowned 1,3-dithiole-2-thiones, important precursors to TTF derivatives, have also attracted attention (Hansen *et al.*, 1992). In this paper, we report the crystal structure of the title compound.

In the title compound (Fig. 1), all bond lengths and angles are normal and comparable with those reported for the related structure (Hou *et al.*, 2009). In the crystal, weak intermolecular C—H···S and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to (a+c)b plane.

Experimental

The title compound was prepared according to the literature (Chen *et al.*, 2005) and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromthane and petroleum (60–90 °C) at room temperatue.

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H 0.97 Å and were included in the refinement in the riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$. The refined value of Flack parameter of 0.42 (9) suggests that the crystal studied was a racemic twin.

Figures

Fig. 1. The molecular structure of the title compound showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level.

4,6,7,9,10,12,13,15-Octahydro-2H-1,3- dithiolo[4,5-i][1,4,7,12]dioxadithiacyclotetradecine-2-thione

Crystal data	
$C_{11}H_{16}O_2S_5$	$F_{000} = 356$
$M_r = 340.54$	$D_{\rm x} = 1.478 \ {\rm Mg \ m^{-3}}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

supplementary materials

Hall symbol: P 2yb a = 8.9201 (18) Å *b* = 8.5317 (17) Å c = 10.128 (2) Å $\beta = 97.00 (3)^{\circ}$ $V = 765.0 (3) \text{ Å}^3$ Z = 2

llaati D

Data collection	
Rigaku R-AXIS RAPID diffractometer	3221 independent reflections
Radiation source: fine-focus sealed tube	3100 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 291 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -11 \rightarrow 11$
$T_{\min} = 0.909, \ T_{\max} = 0.922$	$k = -11 \rightarrow 10$
7527 measured reflections	$l = -13 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.0508P)^2 + 0.1939P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.088$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
3221 reflections	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
164 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983); 1359 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.42 (9)
~	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Cell parameters from 7211 reflections $\theta = 3.1 - 27.5^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 291 KBlock, yellow $0.13 \times 0.12 \times 0.11 \text{ mm}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.9104 (3)	0.5403 (4)	1.0514 (2)	0.0344 (5)
C2	0.6930 (2)	0.4126 (3)	0.8914 (2)	0.0264 (5)
C3	0.5748 (3)	0.2952 (3)	0.8447 (2)	0.0342 (5)
H3A	0.6206	0.1920	0.8492	0.041*
H3B	0.5391	0.3164	0.7521	0.041*
C4	0.3178 (3)	0.4733 (4)	0.8901 (3)	0.0406 (6)
H4A	0.2524	0.4990	0.9568	0.049*
H4B	0.3929	0.5556	0.8915	0.049*
C5	0.2242 (3)	0.4741 (4)	0.7555 (3)	0.0445 (7)
H5A	0.1638	0.3795	0.7439	0.053*
H5B	0.1566	0.5637	0.7482	0.053*
C6	0.2480 (3)	0.4848 (4)	0.5262 (3)	0.0426 (6)
H6A	0.1704	0.5650	0.5179	0.051*
H6B	0.2005	0.3842	0.5047	0.051*
C7	0.3637 (3)	0.5190 (4)	0.4329 (3)	0.0418 (6)
H7A	0.3150	0.5253	0.3421	0.050*
H7B	0.4128	0.6185	0.4558	0.050*
C8	0.5855 (3)	0.4162 (4)	0.3590 (3)	0.0427 (7)
H8A	0.5382	0.4495	0.2722	0.051*
H8B	0.6331	0.3156	0.3480	0.051*
C9	0.7060 (3)	0.5337 (4)	0.4090 (3)	0.0470 (7)
H9A	0.6589	0.6351	0.4175	0.056*
H9B	0.7765	0.5438	0.3438	0.056*
C10	0.6889 (3)	0.5696 (4)	0.6801 (2)	0.0381 (6)
H10A	0.6885	0.6826	0.6690	0.046*
H10B	0.5861	0.5322	0.6586	0.046*
C11	0.7448 (2)	0.5293 (3)	0.8207 (2)	0.0290 (5)
01	0.3233 (2)	0.4825 (3)	0.65686 (18)	0.0432 (5)
O2	0.4715 (2)	0.3969 (2)	0.44464 (17)	0.0385 (4)
S1	1.03598 (9)	0.58767 (12)	1.17933 (8)	0.0558 (2)
S2	0.78149 (7)	0.39272 (8)	1.05411 (6)	0.03282 (15)
S3	0.41352 (8)	0.29178 (9)	0.93755 (8)	0.04456 (18)
S4	0.80970 (8)	0.48036 (12)	0.56811 (7)	0.0539 (2)
S5	0.89230 (7)	0.64009 (8)	0.90156 (7)	0.03733 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (A	Å ²)	
-----------------------------------	------------------	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0240 (11)	0.0456 (15)	0.0325 (11)	0.0034 (10)	-0.0003 (9)	-0.0064 (11)
C2	0.0195 (10)	0.0336 (13)	0.0252 (10)	0.0033 (8)	-0.0005 (8)	-0.0022 (9)
C3	0.0310 (12)	0.0346 (13)	0.0356 (12)	0.0012 (10)	-0.0020 (9)	-0.0022 (11)
C4	0.0330 (13)	0.0503 (17)	0.0400 (13)	0.0006 (12)	0.0105 (10)	-0.0063 (12)
C5	0.0259 (12)	0.0616 (19)	0.0473 (15)	0.0072 (12)	0.0094 (11)	0.0041 (14)
C6	0.0275 (13)	0.0597 (19)	0.0388 (13)	0.0049 (12)	-0.0030 (10)	0.0054 (13)

supplementary materials

C7	0.0369 (14)	0.0520 (17)	0.0346 (12)	0.0011 (12)	-0.0028 (11)	0.0071 (12)
C8	0.0417 (15)	0.0582 (19)	0.0283 (11)	-0.0032 (13)	0.0048 (10)	0.0000 (12)
C9	0.0413 (15)	0.069 (2)	0.0313 (12)	-0.0104 (14)	0.0065 (11)	0.0044 (13)
C10	0.0318 (13)	0.0507 (16)	0.0315 (12)	0.0060 (11)	0.0028 (10)	0.0054 (11)
C11	0.0184 (10)	0.0390 (13)	0.0292 (11)	0.0012 (9)	0.0020 (8)	-0.0002 (10)
O1	0.0233 (8)	0.0716 (14)	0.0349 (9)	0.0071 (9)	0.0045 (7)	0.0047 (9)
O2	0.0346 (10)	0.0433 (11)	0.0377 (9)	-0.0016 (8)	0.0049 (7)	0.0018 (9)
S1	0.0336 (4)	0.0887 (7)	0.0416 (4)	-0.0110 (4)	-0.0092 (3)	-0.0101 (4)
S2	0.0298 (3)	0.0407 (3)	0.0267 (3)	-0.0002 (2)	-0.0015 (2)	0.0031 (2)
S3	0.0319 (3)	0.0508 (4)	0.0507 (4)	-0.0110 (3)	0.0041 (3)	0.0134 (3)
S4	0.0314 (3)	0.0975 (7)	0.0325 (3)	0.0086 (4)	0.0027 (3)	-0.0032 (4)
S5	0.0254 (3)	0.0466 (4)	0.0399 (3)	-0.0089 (3)	0.0031 (2)	0.0025 (3)

Geometric parameters (Å, °)

C1—S1	1.656 (3)	С6—Н6А	0.9700
C1—S2	1.708 (3)	С6—Н6В	0.9700
C1—S5	1.730 (3)	C7—O2	1.413 (4)
C2—C11	1.341 (4)	С7—Н7А	0.9700
C2—C3	1.489 (3)	С7—Н7В	0.9700
C2—S2	1.747 (2)	C8—O2	1.424 (3)
C3—S3	1.812 (3)	C8—C9	1.511 (4)
С3—НЗА	0.9700	C8—H8A	0.9700
С3—Н3В	0.9700	C8—H8B	0.9700
C4—C5	1.510 (4)	C9—S4	1.815 (3)
C4—S3	1.805 (3)	С9—Н9А	0.9700
C4—H4A	0.9700	С9—Н9В	0.9700
C4—H4B	0.9700	C10-C11	1.490 (3)
C5—O1	1.414 (3)	C10—S4	1.824 (3)
С5—Н5А	0.9700	C10—H10A	0.9700
С5—Н5В	0.9700	C10—H10B	0.9700
C6—O1	1.409 (3)	C11—S5	1.741 (2)
C6—C7	1.510 (4)		
S1—C1—S2	124.03 (17)	С6—С7—Н7А	110.0
S1—C1—S5	123.24 (18)	O2—C7—H7B	110.0
S2—C1—S5	112.70 (14)	С6—С7—Н7В	110.0
C11—C2—C3	127.4 (2)	H7A—C7—H7B	108.4
C11—C2—S2	115.48 (18)	O2—C8—C9	113.8 (2)
C3—C2—S2	117.08 (18)	O2—C8—H8A	108.8
C2—C3—S3	114.98 (18)	С9—С8—Н8А	108.8
С2—С3—НЗА	108.5	O2—C8—H8B	108.8
S3—C3—H3A	108.5	С9—С8—Н8В	108.8
С2—С3—Н3В	108.5	H8A—C8—H8B	107.7
S3—C3—H3B	108.5	C8—C9—S4	113.3 (2)
НЗА—СЗ—НЗВ	107.5	С8—С9—Н9А	108.9
C5—C4—S3	115.9 (2)	S4—C9—H9A	108.9
C5—C4—H4A	108.3	С8—С9—Н9В	108.9
S3—C4—H4A	108.3	S4—C9—H9B	108.9
C5—C4—H4B	108.3	Н9А—С9—Н9В	107.7

S3—C4—H4B	108.3	C11—C10—S4	110.08 (18)
H4A—C4—H4B	107.4	C11-C10-H10A	109.6
O1—C5—C4	108.3 (2)	S4	109.6
O1—C5—H5A	110.0	C11-C10-H10B	109.6
C4—C5—H5A	110.0	S4	109.6
O1—C5—H5B	110.0	H10A—C10—H10B	108.2
C4—C5—H5B	110.0	C2-C11-C10	125.7 (2)
H5A—C5—H5B	108.4	C2—C11—S5	116.22 (18)
O1—C6—C7	107.8 (2)	C10-C11-S5	118.0 (2)
O1—C6—H6A	110.1	C6—O1—C5	113.3 (2)
С7—С6—Н6А	110.1	С7—О2—С8	113.1 (2)
O1—C6—H6B	110.1	C1—S2—C2	98.09 (12)
С7—С6—Н6В	110.1	C4—S3—C3	103.16 (13)
H6A—C6—H6B	108.5	C9—S4—C10	99.88 (14)
O2—C7—C6	108.3 (2)	C1—S5—C11	97.47 (13)
O2—C7—H7A	110.0		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C7—H7A····S1 ⁱ	0.97	2.86	3.695 (3)	145
C10—H10A····O2 ⁱⁱ	0.97	2.51	3.317 (3)	140

Symmetry codes: (i) *x*-1, *y*, *z*-1; (ii) -*x*+1, *y*+1/2, -*z*+1.

